

Recreational Economics

Economic Data (includes demographics)

- Stated preference surveys: anglers state preferences for management options
- Trip Expenditures
- Valuation surveys

Models

- Impacts or I/O (contribution to GDP, employment)
- RUM models: (analyze closures, reg changes, changes in environmental quality

Recreational Economics

Implications of Ecosystem Based Approach

- Broader in Scope requires:
 - analyzing more support industries (\$ problem)
 - Assessing linkages to other natural ecosystem components (Research question / \$ problem)
- Finer in Scale requires:
 - May require improved spatial data (\$ /outreach)

Protected Species

Implications of Ecosystem Approach to Fishery Mgmt

- Broader in Scope requires:
 - Better assessing interactions with fisheries (Research question)
 - Assessing linkages to other natural ecosystem components (Research question / \$\$ problem)
 - Institutional issues / baggage? (in/outreach problem?)
- Finer in Scale requires:
 - Better understanding of preferred habitats (spatially and temporally) and incorporating this info into model (research question / \$\$ problem)

Commercial Fisheries

Economic Data

- Core: landings price / revenue; input prices, usage (e.g., fuel, bait, labor); fixed costs (engines, insurance, drydock)
- Permit, quota lease payments, sales
- Demographic data
- Stated preference surveys (limited)

Models

- Bioeconomic Models
 - Dual (profit, revenue, cost) Models
 - Classic Bioeconomic Schaefer growth model
 - Rational expectations / option theory /time series models
- Impact Models (contribution to GDP, employment)
- Random Utility Models
- Nonparametric models (DEA, dir. distance fxns)
- Emerging Ecosytem Models: Portfolio theory / general equilibrium / experimental econ / operations research / bayesian

Bioeconomic Models: Dual

Obj. max profit = $\mathbf{p}\mathbf{y} - \mathbf{w}\mathbf{x}$ s.t. $\mathbf{y} = \mathbf{f}(\mathbf{x})$ [alt. $\mathbf{y} = \mathbf{f}(\mathbf{x}; \mathbf{Q})$]

<u>Targeting</u>: Catch increases w/ inc own price (elastic) <u>Bycatch</u>: Catch Species 1 inc. w/ inc. price target Substitutes: Catch Species 1 dec. w/ inc. price target

Applications: target behavior, bycatch, capital stuffing, ITQs, market power, effort restrictions

Bioeconomic Models: Long Run

Max profit =
$$\sum_{t} \mathbf{p}_{t} \mathbf{y}_{t} - \sum_{t} \mathbf{w}_{t} \mathbf{x}_{t}$$
 s.t. $\sum_{t} \mathbf{y}_{t} = \sum_{t} f(\mathbf{x}_{t}; \mathbf{B}_{t})$

Long-run decisions: Entry/exit decisions;

Handles problem w/ long time horizons: analyses of rebuilding programs; effects of MPAs, habitat restoration

Models Cont.

- Impact Models
- RUMs:
- Ex. Max EU(py-costs); y uncertain and can depend on environmental factors, stock conditions
 - Choose site 1 if EU Site 1>EU Site 2
 - Applications: MPAs, spatial heterogeneity
- Nonparametric: primarily capacity estimation; bycatch/modeling "bads"

Commercial Economics

Implications of Ecosystem Based Approach

- Broader in Scope requires:
 - analyzing more support industries (\$ problem)
 - Assessing linkages to other natural ecosystem components (Research question / \$\$ problem)
- Finer in Scale requires:
 - Improved spatial data (\$ problem / outreach)
 - Improved Spatial Models (Research question / \$problem)
 - Improved core economic data (\$ problem / institutional problem / governance problem)

Sociocultural Research

Data

- Community Profiling (secondary data)
- Ethnographic studies (primary data)

Models

- Qualitative; Decision Tree theory; etc.
- Lack predictive model that integrates w/ other disciplines (in process of developing)

Sociocultural Research

Importance

- Traditional economic models model labor as mobile but generally not true:
 - People are sticky
 - Labor has low salvage value (self-assessment)
- High social costs of stationary stakeholders
 - = High winge (sp?)

Sociocultural Research

Implications of Ecosystem Approach to Fishery Mgmt

- Broader in Scope requires:
 - Profiling non-fishing / non-NS8 communities (\$ problem)
 - Assessing linkages to other ecosystem components (Research question / \$ problem)
- Finer in Scale requires
 - Better understanding of behavioral motivations and incorporating this info into model (research question / \$ problem)

Drivers?

Defn: Fishermen, anglers, public, managers, et al.:

• Economic agents with a past, a present and a future, whose actions are influenced by environmental factors and whose decisions may have both short- and long-term consequences for themselves, others and posterity and are made with incomplete information in an uncertain world with options varying across space.